Name: \qquad

1. A frog jumps at an angle of 42.5° to the horizontal with a speed of $13.5 \mathrm{~m} / \mathrm{s}$. How far does it travel?

$$
\begin{aligned}
& v_{\text {vert }}=13.5 \mathrm{~m} / \mathrm{s} \cdot \sin \left(42.5^{\circ}\right)=9.1204678 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}_{\text {horiz }}=13.5 \mathrm{~m} / \mathrm{s} \cdot \cos \left(42.5^{\circ}\right)=9.953244 \mathrm{~m} / \mathrm{s} \\
& v=v_{i}+a t \\
& -9.1204678 \mathrm{~m} / \mathrm{s}=9.1204678 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \dagger \\
& t=(-18.2409356 \mathrm{~m} / \mathrm{s}) /\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.86131996 \mathrm{~s} \\
& d=v t=9.953244 \mathrm{~m} / \mathrm{s} \cdot 1.86131996 \mathrm{~s}=18.5261717 \mathrm{~m}=18.5 \mathrm{~m}
\end{aligned}
$$

2. A 450 kg mass is accelerated at $2.5 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the net force causing this acceleration? (b) How much distance will have been covered after 3.5 s ?
a) $F=m a$
$F=450 \mathrm{~kg} \cdot 2.5 \mathrm{~m} / \mathrm{s}^{2}=1125 \mathrm{~N}=1100 \mathrm{~N}$
b) $d=d_{i}+v_{i} t+\frac{1}{2} a t^{2}$
$d=0 \mathrm{~m}+(0 \mathrm{~m} / \mathrm{s}) 3.5 \mathrm{~s}+\frac{1}{2}\left(2.5 \mathrm{~m} / \mathrm{s}^{2}\right)(3.5 \mathrm{~s})^{2}$
$d=15.3125 \mathrm{~m}=15 \mathrm{~m}$
3. A book sits on a table. The book has a mass of 1.25 kg . Draw a free body diagram of the thing.
4. A boy pushes a lawnmower. The handle of the lawn mower makes an angle of 22° with the horizontal. If the boy pushes with a force of 135 N , what are the horizontal and vertical components of the force?
5. A 46.5 kg traffic light hangs from two cables which are at the angles shown. Calculate the tensions in the two cables.

6. A 50.5 kg traffic light hangs from two cables which are at the angles shown. Calculate the tensions in the two cables.

$$
\begin{aligned}
& T_{1 \text { vert }}+T_{2 \text { vert }}+w_{\text {light }}=0 \quad\left(a_{\text {vert }}=0\right) \\
& T_{1 \text { horiz }}+T_{2 \text { horiz }}=0 \quad\left(a_{\text {horiz }}=0\right) \\
& T_{1} \cdot \sin \left(78^{\circ}\right)+T_{2} \cdot \sin \left(33^{\circ}\right)+50.5 \mathrm{~kg} \cdot\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& T_{1} \cdot \cos \left(78^{\circ}\right)+T_{2} \cdot \cos \left(33^{\circ}\right)=0 \\
& \\
& T_{1} \cdot \sin \left(78^{\circ}\right)+T_{2} \cdot \sin \left(33^{\circ}\right)=50.5 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~T}_{1} \cdot \cos \left(78^{\circ}\right)=T_{2} \cdot \cos \left(33^{\circ}\right) \\
& T_{1} \cdot \sin \left(78^{\circ}\right)+T_{2} \cdot \sin \left(33^{\circ}\right)=494.9 \mathrm{~N} \\
& T_{1}=T_{2} \cdot \cos \left(33^{\circ}\right) / \cos \left(78^{\circ}\right) \\
& \left(T_{2} \cdot \cos \left(33^{\circ}\right) / \cos \left(78^{\circ}\right)\right) \cdot \sin \left(78^{\circ}\right)+T_{2} \cdot \sin \left(33^{\circ}\right)=494.9 \mathrm{~N} \\
& T_{2} \cdot 3.9456348+T_{2} \cdot 0.544639=494.9 \mathrm{~N} \\
& T_{2}(3.9456348+0.544639)=494.9 \mathrm{~N} \\
& T_{2}(4.490274)=494.9 \mathrm{~N} \\
& T_{2}=110.215995 \mathrm{~N}=110 \mathrm{~N} \\
& T_{1}=T_{2} \cdot \cos \left(33^{\circ}\right) / \cos \left(78^{\circ}\right) \\
& T_{1}=110.215995 \mathrm{~N} \cdot 4.0337826=444.58736668 \mathrm{~N}=440 \mathrm{~N}
\end{aligned}
$$

